\(\int \cos ^4(e+f x) (a+b \sin ^n(e+f x))^p \, dx\) [436]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [F(-1)]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 23, antiderivative size = 23 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\text {Int}\left (\cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p,x\right ) \]

[Out]

Unintegrable(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x)

Rubi [N/A]

Not integrable

Time = 0.05 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx \]

[In]

Int[Cos[e + f*x]^4*(a + b*Sin[e + f*x]^n)^p,x]

[Out]

Defer[Int][Cos[e + f*x]^4*(a + b*Sin[e + f*x]^n)^p, x]

Rubi steps \begin{align*} \text {integral}& = \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 10.21 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx \]

[In]

Integrate[Cos[e + f*x]^4*(a + b*Sin[e + f*x]^n)^p,x]

[Out]

Integrate[Cos[e + f*x]^4*(a + b*Sin[e + f*x]^n)^p, x]

Maple [N/A] (verified)

Not integrable

Time = 0.95 (sec) , antiderivative size = 23, normalized size of antiderivative = 1.00

\[\int \left (\cos ^{4}\left (f x +e \right )\right ) {\left (a +b \left (\sin ^{n}\left (f x +e \right )\right )\right )}^{p}d x\]

[In]

int(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x)

[Out]

int(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x)

Fricas [N/A]

Not integrable

Time = 0.31 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int { {\left (b \sin \left (f x + e\right )^{n} + a\right )}^{p} \cos \left (f x + e\right )^{4} \,d x } \]

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x, algorithm="fricas")

[Out]

integral((b*sin(f*x + e)^n + a)^p*cos(f*x + e)^4, x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**4*(a+b*sin(f*x+e)**n)**p,x)

[Out]

Timed out

Maxima [N/A]

Not integrable

Time = 7.26 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int { {\left (b \sin \left (f x + e\right )^{n} + a\right )}^{p} \cos \left (f x + e\right )^{4} \,d x } \]

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x, algorithm="maxima")

[Out]

integrate((b*sin(f*x + e)^n + a)^p*cos(f*x + e)^4, x)

Giac [N/A]

Not integrable

Time = 10.63 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int { {\left (b \sin \left (f x + e\right )^{n} + a\right )}^{p} \cos \left (f x + e\right )^{4} \,d x } \]

[In]

integrate(cos(f*x+e)^4*(a+b*sin(f*x+e)^n)^p,x, algorithm="giac")

[Out]

integrate((b*sin(f*x + e)^n + a)^p*cos(f*x + e)^4, x)

Mupad [N/A]

Not integrable

Time = 13.49 (sec) , antiderivative size = 25, normalized size of antiderivative = 1.09 \[ \int \cos ^4(e+f x) \left (a+b \sin ^n(e+f x)\right )^p \, dx=\int {\cos \left (e+f\,x\right )}^4\,{\left (a+b\,{\sin \left (e+f\,x\right )}^n\right )}^p \,d x \]

[In]

int(cos(e + f*x)^4*(a + b*sin(e + f*x)^n)^p,x)

[Out]

int(cos(e + f*x)^4*(a + b*sin(e + f*x)^n)^p, x)